
Author

Father

Agile & Lean coach

www.crisp.se

Consultant

Henrik Kniberg

henrik.kniberg@crisp.se

@HenrikKniberg

What is Agile?

August 20, 2013

(& more...)

Henrik Kniberg

Boring but important practical info about these slides

Usage
Feel free to use slides & pictures as you wish, as long as you leave my name somewhere.
For licensing details see Creative Commons (http://creativecommons.org/licenses/by/3.0/)

Downloading the right font
This presentation uses the ”Noteworthy” font. If you’re using Mac OSX 10.7 or later it should be
preinstalled. If you’re on a Windows or older Mac OS then you need to download the font from here:
http://tinyurl.com/noteworthy-ttc
•  On Windows right-click the font file and select ”install”. Then restart Powerpoint.
•  On Mac, double-click the font file and press ”install font”. Then restart Powerpoint.

The PDF version of these slides has the font embedded, so you don’t need to do anything. On the other
hand you don’t get the fancy animations.

Font test

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

How the font shows up on your computer: How the font is supposed to look:
(screenshot from my computer)

Regardless of font appearance, if that text doesn’t fit nicely into
the box then you’re going to need to download the right font, or
switch to a new font and fiddle with the slides to make sure
things fit.

Early delivery of business value

Henrik Kniberg

Less bureaucracy

Why?
 How?

(Thanks Alistair Cockburn for this simplified definition of Agile)

Agile is...

All products / features start with a Great Idea!

Henrik Kniberg

Unfortunately..... it is likely to fail

Henrik Kniberg

Plan

Reality

Long projects get Longer

Henrik Kniberg

Longer project

More likely to
get interrupted

More scope
creep

Most IT projects fail. And are late.

Henrik Kniberg

IT project success rate 1994:
15%

 Average cost & time overrun: ≈170%

IT project success rate 2004:
34%

 Average cost & time overrun: ≈70%

The Standish Group has studied over 40,000 projects in 10 years.

Sources:
http://www.softwaremag.com/L.cfm?Doc=newsletter/2004-01-15/Standish
http://www.infoq.com/articles/Interview-Johnson-Standish-CHAOS

Plan: €1,000,000

Actual: €2,700,000

Plan: €1,000,000

Actual: €1,700,000

We tend to build the wrong thing

Henrik Kniberg

Sources:
Standish group study reported at XP2002 by Jim Johnson, Chairman

The right-hand graph is courtesy of Mary Poppendieck

Always

7%

Often

13%

Some-
times

16%

Rarely

19%

Never

45%

Features and functions used in a typical system

Half of the

stuff we build
is never used!

Co
st

of features

01:39

Big Bang

Henrik Kniberg

RISK

Big Bang = Big Risk

Henrik Kniberg

Cumulative

Value

Big Bang = cannon ball

Henrik Kniberg

Assumptions:

•  The customer knows what he wants

•  The developers know how to build it

•  Nothing will change along the way

01:36

Agile

Henrik Kniberg

Agile = homing missile

Henrik Kniberg

Assumptions:

•  The customer discovers what he wants

•  The developers discover how to build it

•  Things change along the way

Henrik Kniberg

14

Agile Manifesto

www.agilemanifesto.org

We are uncovering better ways of developing
software by doing it and helping others do it.

Feb 11-13, 2001

Snowbird ski resort, Utah

Kent Beck

Mike Beedle

Arie van Bennekum

Alistair Cockburn

Ward Cunningham

Martin Fowler

James Grenning

Jim Highsmith

Andrew Hunt

Ron Jeffries

Jon Kern

Brian Marick

Robert C. Martin

Steve Mellor

Ken Schwaber

Jeff Sutherland

Dave Thomas

Henrik Kniberg

15

Agile Manifesto

www.agilemanifesto.org

We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools
Individer och interaktioner framför processer och verktyg

Working software over comprehensive documentation
Fungerande programvara framför omfattande dokumentation

Customer collaboration over contract negotiation
Kundsamarbete framför kontraktsförhandling

Responding to change over following a plan
Anpassning till förändring framför att följa en plan

That is, while there is value in the items on
the right, we value the items on the left more.

Principles behind the Agile Manifesto

•  Our highest priority is to satisfy the customer

through early and continuous delivery of valuable
software.

•  Welcome changing requirements, even late in
development. Agile processes harness change for
the customer's competitive advantage.

•  Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

•  Business people and developers must work
together daily throughout the project.

•  Build projects around motivated individuals. Give
them the environment and support they need, and
trust them to get the job done.

•  The most efficient and effective method of
conveying information to and within a development
team is face-to-face conversation.

•  Working software is the primary measure of
progress.

•  Agile processes promote sustainable
development. The sponsors, developers, and
users should be able to maintain a constant
pace indefinitely.

•  Continuous attention to technical excellence
and good design enhances agility.

•  Simplicity--the art of maximizing the amount of
work not done--is essential.

•  The best architectures, requirements, and
designs emerge from self-organizing teams.

•  At regular intervals, the team reflects on how
to become more effective, then tunes and
adjusts its behavior accordingly.

Agile ”umbrella” –
a family of iterative, incremental methods

Sources:
3rd Annual ”State of Agile Development” Survey June-July 2008
•  3061 respondents
•  80 countries

Scrum
 XP

DSDM

FDD

Crystal

Kanban

01:32

Iterative & Incremental

Henrik Kniberg

Agile = Iterative + Incremental

Henrik Kniberg

Don’t try to get it all right

from the beginning

Don’t build it all at once

cost

value

cost
 value

RISK

Not ”horizontal” increments

Henrik Kniberg

DB

Server

Client

1

2

3

1
 2
 3
 4

value

”Vertical” increments!

Henrik Kniberg

DB

Server

Client
 1

5

2
 3

1
 4
3
2

value

Keep iterations short
(2-3 weeks)

Henrik Kniberg

Short iteration

Less likely to
get interrupted

Less scope
creep

Planning is easier with frequent releases

Henrik Kniberg

01:26

Planning

Henrik Kniberg

Face it.
Estimates are almost always Wrong!

Henrik Kniberg

How estimates are affected by specification
length

117 hrs 173 hrs

Spec
 Same spec – more pages

Source: How to avoid impact from irrelevant and misleading info
on your cost estimates, Simula research labs estimation seminar,
Oslo, Norway, 2006 Henrik Kniberg

How estimates are affected by
irrelevant information

20 hrs

Spec 1

A

B

C

Same spec

+ irrelevant details

A

B

C

39 hrs

Henrik Kniberg

Source: How to avoid impact from irrelevant and misleading info
on your cost estimates, Simula research labs estimation seminar,
Oslo, Norway, 2006

How estimates are affected by
extra requirements

4 hrs

Spec 1

A

B

C

D

Spec 2

A

B

C

D

E

4 hrs

Spec 3

A

B

C

D

E

8 hrs

Henrik Kniberg

Source: How to avoid impact from irrelevant and misleading info
on your cost estimates, Simula research labs estimation seminar,
Oslo, Norway, 2006

How estimates are affected by anchoring

456 hrs

Spec

500 hrs
Never mind me

Same spec

555 hrs

50 hrs

Never mind me

Same spec

99 hrs

Henrik Kniberg

Source: How to avoid impact from irrelevant and misleading info
on your cost estimates, Simula research labs estimation seminar,
Oslo, Norway, 2006

Velocity
to know the future, you need to know the past

Henrik Kniberg

When will we
get there?

We are
here

Our steps
so far

Velocity-based release planning

Henrik Kniberg

Backlog

Velocity-based release planning

Henrik Kniberg

Done!

Jan

Velocity-based release planning

Henrik Kniberg

Done!

Jan

Done!

Feb

Velocity-based release planning

Henrik Kniberg

Done!

Jan

Done!

Feb

Done!

Mar

Q2 forecast

All of

these

Some of
these

None of
these

Release burnup chart

Henrik Kniberg

Delivered
features

Date

Fixed scope forecast

Henrik Kniberg

Delivered
features

Date

When will all of
this be done?

Around week
27-30

Fixed time forecast

Henrik Kniberg

Date

What will be done
by Christmas?

Some of
these

All of
these

Delivered
features

Fixed time & scope forecast

Henrik Kniberg

Date

Can we get
all of THIS

done...

Delivered
features

....by
Christmas?

No. That is
unrealistic.

Fixed time & scope forecast

Henrik Kniberg

Date

Delivered
features

We can get THIS
much done by

Christmas

...and the rest done
by February.

No. That is
unrealistic.

Henrik Kniberg

40

Done!

Velocity per week

Example: Measuring velocity by counting cards

Henrik Kniberg

41

41

Total

of

delivered
features

Week

Example: Release planning using a burnup chart

All of these
will be done

Some of these
will be done,

but not all

None of these
will be done

01:14

Estimating

Henrik Kniberg

Fact: Features have different sizes

Henrik Kniberg

Henrik Kniberg

Option 1: Ignore the size difference.
 It evens out over time.
 Done!

Velocity per week

Option 2: Estimate relative feature Size.

Henrik Kniberg

Delivered
features

Date

1
 4
2
 1
 1

Delivered

Story points

Week 1

Velocity:

5 story points

Week 2

Velocity:

4 story points

Week 3

Velocity:

4 story points

Two different questions: Size & Time

Henrik Kniberg

1: What is weight of
each stone?
2 kg
 4 kg

1 kg
 1 kg

200 kg / hour

2: What is our
delivery capacity?

Agile estimating strategy

•  Don’t estimate time.

•  Estimate relative size of features.

•  Measure velocity per sprint.

•  Derive release plan.

•  (Scrum rule) Estimates done by the people who are going to do the work.

•  Not by the people who want the work done.

•  Estimate & reestimate continuously during project

•  Don’t trust early estimates

•  Prefer verbal communication over detailed, written specifications.

•  Avoid false precision

•  Better to be roughly right
than precisely wrong

Henrik Kniberg
http://planningpoker.crisp.se

Cost control without time reports

Henrik Kniberg

1 sprint = 200,000kr

(salary cost of 5 people for 2 weeks)

1 story point = 20,000kr

(200,000kr / 10 story points)

1 story point = 5 mandays

(50 mandays / 10 story points)

Feature
 Size
 Cost
 Cost

Delete user
 3 sp
 15

mandays

60,000kr

PDF export
 2 sp
 10
mandays

40,000kr

Outlook
integration

8 sp
 40
mandays

160,000kr

Average velocity:

10 story points per sprint

Mon
 Tue
 Wed
 Thu
 Fri
 Mon
Tue
 Wed
 Thu
 Fri

Sprint length: 2 weeks
Team size: 5 people

Better to be Roughly Right
than Precisely Wrong

01:05

Value

Henrik Kniberg

Features have different value
(and value is independent of size)

Henrik Kniberg

2 minute standup discussion (pair/trio):

• Give a real-life example of a feature that is

small and very valuable

• Give a real-life example of a feature that is

large and not very valuable.

Weight: 1 gram

Value: 100 000 kr
 Weight: 2000 grams

Value: 5 kr

2:00 1:59 1:58 1:57 1:56 1:55 1:54 1:53 1:52 1:51 1:50 1:49 1:48 1:47 1:46 1:45 1:44 1:43 1:42 1:41 1:40 1:39 1:38 1:37 1:36 1:35 1:34 1:33 1:32 1:31 1:30 1:29 1:28 1:27 1:26 1:25 1:24 1:23 1:22 1:21 1:20 1:19 1:18 1:17 1:16 1:15 1:14 1:13 1:12 1:11 1:10 1:09 1:08 1:07 1:06 1:05 1:04 1:03 1:02 1:01 1:00 0:59 0:58 0:57 0:56 0:55 0:54 0:53 0:52 0:51 0:50 0:49 0:48 0:47 0:46 0:45 0:44 0:43 0:42 0:41 0:40 0:39 0:38 0:37 0:36 0:35 0:34 0:33 0:32 0:31 0:30 0:29 0:28 0:27 0:26 0:25 0:24 0:23 0:22 0:21 0:20 0:19 0:18 0:17 0:16 0:15 0:14 0:13 0:12 0:11 0:10 0:09 0:08 0:07 0:06 0:05 0:04 0:03 0:02 0:01 Done

Henrik Kniberg

Maximize Value, not Output

Less is More

Henrik Kniberg

Antoine de Saint-Exupery

Perfection is attained,
not when there is nothing more to add,

but when there is nothing left to take away

Example: Google

Henrik Kniberg

Google vs Yahoo

Henrik Kniberg

0

50

100

150

200

250

Google
 Yahoo

Value (billion $)

Example: Apple

Henrik Kniberg

2007
 2008

-  App Store

-  3G

2009

-  Copy/Paste

-  Search

2010

-  Multitasking

-  Video calls

Example: Blocket

Henrik Kniberg

Example: Dropbox

Henrik Kniberg

Don’t give the team a Solution to Build

Henrik Kniberg

OK

Build a
Bridge

Give the team a Problem to Solve

Henrik Kniberg

Options:

•  Bridge

•  Ferry

•  Tunnel

•  Move the

villages together

We need to get to the
other village without

getting wet.

OK

?

Always include the Why

Henrik Kniberg

As online buyer

I want to save my shopping cart

so that I can continue shopping later

As X

I want Y

so that Z

Improving the Value Curve

Henrik Kniberg

Big Bang
 Big increments
 Small increments
 Highest value first

$
 $
 $
 $
$
$
 $$$$

To Do
 Done

A

Henrik Kniberg

C D

Timeboxing

A

Plan

Big Bang scenario

Agile scenario

Week 1 Week 2 Week 3 Week 4

B

C D

A

Week 1 Week 2 Week 3 Week 4

B

Week 5 Week 6 Week 7 Week 8

A

Week 1 Week 2 Week 3 Week 4

B

Week 5 Week 6

A B

”We will deliver ABCD in 4 weeks”

”We always deliver something every sprint (2 weeks)”

”We think we can finish ABCD in 4 weeks, but we aren’t sure”

”We always deliver the most important items first”

(doomed to fail, but we don’t know it yet)

Oops, we’re late.

Oops, our velocity is lower than we thought.

It looks like we’ll only finish AB by week 4.

What should we do now?

Scope

Cost Time

Quality

Scope

Cost Time

Quality

X X X

E

Focus on Feedback!
Delivery frequency = Speed of learning

Henrik Kniberg

Feedback
and
Requests

Demos

and

Releases

Development team

Stakeholders
 It is not the strongest
species that survive, nor
the most intelligent, but

the ones most responsive
to change.

Charles Darwin

Reduced Risk
 Big

Bang

Agile reduces risk

Henrik Kniberg

Agile

Date

Total

delivered

value

Business risk

Social risk
 Cost & schedule risk

Technical risk

Big

Bang

Agile

Faster learning = Higher value

Henrik Kniberg

Date

Total

delivered

value

Higher value

Value = Knowledge Value + Customer Value

00:49

The Development Team

Henrik Kniberg

Resource optimization vs Time-to-market optimzation

Henrik Kniberg

C

Specialists

C
 D

T
S

Cross-functional team

User needs

Specialized tasks

D

T

S

Resource optimization
 Time-to-market optimization

Cross-functional teams
are vertical

Henrik Kniberg

Client team

C
 C
 C

Test team

T
 T
 T

DB team

D
 D
 D

Server team

S
 S
 S

Feature team 1

C

C

S

D

T

T

C

S

D

T

Feature team 2

D

S

DB

Server

Client

User

Communities

of interest

Spotify

Henrik Kniberg

Tribe
 Tribe
 Tribe

Tribe
Tribe
 Tribe

PO
 PO
 PO

Tribe

Tribe lead

PO
 PO
 PO
 PO

Tribe

Chapter

Chapter

Tribe lead

PO

Chapter

Chapter
 Guild

Spotify

Cultivating a Great Team

•  Colocated

•  Small (3-7 ppl)

•  Self-organizing

•  Cross-functional

•  Clear mission & product owner

•  Empowered to deliver

•  Direct contact with users & stakeholders

•  Focused. No multitasking.

•  Transparent

Henrik Kniberg

Big team working hard

Small team working smart

Week 1
v1.0

Week 2
v1.1

Week 3
v1.2

Multiple teams working together

Henrik Kniberg

Weekly release train

Team

backlogs

Continuous

integration

Product

 backlog

Releasing must be REALLY easy

Henrik Kniberg

Req
 Code
 Test

Release!

Release = Drama!

Release = Routine

Why we get stuck in Big Bang thinking

Releasing is

cheap & safe

Release

often

Releasing is

expensive & risky

Release

seldom

Henrik Kniberg

The team balances long-term and short-term work

Henrik Kniberg

Mon
 Tue
 Wed
 Thu
 Fri
 Mon
Tue
 Wed
 Thu
 Fri

Prototyping

Feature

development

Manual testing

Meetings

Bug fix
 Architecture

Infrastructure

Test automation

Long term focus
Short term focus

sprint 1
sprint 2
sprint 3

The team Limits work to capacity

Henrik Kniberg

Our capacity is
about 5 features

per sprint

We CAN do
more if we
sacrifice

quality

But we
don’t.

Which 5 shall we
do next?

... and knows how to say No

The team continuously experiments
and gradually improves it’s way of working

•  Driven from the bottom

•  Supported from the top

Henrik Kniberg

Velocity

Quality

Motivation

Effectiveness

Speed

Value

... etc ...

00:33

Example

Henrik Kniberg

Before

Concept
pres.

Resource
planning

Graphics
design

Sound
design
 Dev
 Integr. &

deploy

1m

4h
6m

8

Game backlog

1w 6m 6m

15

Design-ready games

12

Production-ready games

1m 3w 3m 3w 1d
(1m+2m)

3 m value added time

25 m cycle time
 = 12%

Process
cycle
efficiency

Before

Concept
pres.

Resource
planning

Graphics
design

Sound
design
 Dev
 Integr. &

deploy

1m

4h
6m

8

Game backlog

1w 6m 6m

15

Design-ready games

12

Production-ready games

1m 3w 3m
(1m+2m)

3w 1d

Cross-functional game team

Game team
(graphics, sound, dev,

integrate)

3-4 months

7 times
faster!

3 m value added time

25 m cycle time
 = 12%

Process
cycle
efficiency

After

Cross-functional teams

Henrik Kniberg

81

Dave
Joe
 Lisa

Dave

Joe

Lisa

January
 February
 March
 April
 May
 June
 July

6 months

3 months

Release

Release

We’re alot faster!

I’m a bit
slower

We’re slow!

I’m fast!

Portfolio-level board

Next
 Develop

Bingo

1

FLOW Avg lead time: weeks 12

Release
 Done

2 Concept
 Playable
 Features
 Polish

3

Zork

Pac
man

Pong

Donkey Kong

Mine
sweeper

Dugout

Duck
hunt

Game
Team

1

Game
Team

2

Game
Team

3

Solitaire

Game
teams

Burndown

Unplanned	
 items

Not
checked	
 out Done!	
 :o)

Write
failing
test

DAO

DB
design

Integr
test

Migration	

tool

Write
failing
test

GUI
spec

Tapestry spike
Impl.

migration

2d

Code
cleanup

Deposit

2d1d 0.5d
1d

2d

8d

1d 2d

2d

Backoffice
Login

Backoffice
User	
 admin

Write
failing
test

3d

2d

1d
2d

Impl
GUI

1dIntegr.
with

JBoss
2d

Write
failing
test

3d

Impl
GUI

6d

Clarify
require-
ments

2d

GUI
design
(CSS)

1d

Fix memory leak(JIRA 125)2d
Sales support

3d Write
whitepaper

4d

SPRINT	
 GOAL:	
 Beta-­‐ready	
 release!

Next

WithdrawPerf	
 testWithdraw

checked	
 out

Write
failing
test

Game team 1

Current game: Pac Man

Burndown

Unplanned	
 items

Not
checked	
 out Done!	
 :o)

Write
failing
test

DAO

DB
design

Integr
test

Migration	

tool

Write
failing
test

GUI
spec

Tapestry spike
Impl.

migration

2d

Code
cleanup

Deposit

2d1d 0.5d
1d

2d

8d

1d 2d

2d

Backoffice
Login

Backoffice
User	
 admin

Write
failing
test

3d

2d

1d
2d

Impl
GUI

1dIntegr.
with

JBoss
2d

Write
failing
test

3d

Impl
GUI

6d

Clarify
require-
ments

2d

GUI
design
(CSS)

1d

Fix memory leak(JIRA 125)2d
Sales support

3d Write
whitepaper

4d

SPRINT	
 GOAL:	
 Beta-­‐ready	
 release!

Next

WithdrawPerf	
 testWithdraw

checked	
 out

Write
failing
test

Game team 2

Current game: Pong

Burndown

Unplanned	
 items

Not
checked	
 out Done!	
 :o)

Write
failing
test

DAO

DB
design

Integr
test

Migration	

tool

Write
failing
test

GUI
spec

Tapestry spike
Impl.

migration

2d

Code
cleanup

Deposit

2d1d 0.5d
1d

2d

8d

1d 2d

2d

Backoffice
Login

Backoffice
User	
 admin

Write
failing
test

3d

2d

1d
2d

Impl
GUI

1dIntegr.
with

JBoss
2d

Write
failing
test

3d

Impl
GUI

6d

Clarify
require-
ments

2d

GUI
design
(CSS)

1d

Fix memory leak(JIRA 125)2d
Sales support

3d Write
whitepaper

4d

SPRINT	
 GOAL:	
 Beta-­‐ready	
 release!

Next

WithdrawPerf	
 testWithdraw

checked	
 out

Write
failing
test

Game team 2

Current game: Donkey Kong

00:22

Succeeding with
software development

Henrik Kniberg

10,000 person-years of experience

Henrik Kniberg

Communication!

Especially between

Developers and Users

What have we learned?

Henrik Kniberg

86

“Doing projects with iterative processes as opposed to the
waterfall method, which called for all project requirements
to be defined up front, is a major step forward.”

IT project success rate 1994:
15%

 Average cost & time overrun: 170%

IT project success rate 2004:
34%

 Average cost & time overrun: 70%

“The primary reason [for the improvement]
is that projects have gotten a lot smaller.”

Jim Johnson
Chairman of
Standish Group

Top 5 reasons for success

1.  User involvement

2.  Executive management support

3.  Clear business objectives

4.  Optimizing scope

5.  Agile process

Sources:
http://www.softwaremag.com/L.cfm?Doc=newsletter/2004-01-15/Standish
http://www.infoq.com/articles/Interview-Johnson-Standish-CHAOS
”My Life is Failure”, Jim Johnson’s book

Scope

Cost
 Time

Minimize distance between Maker and User

Henrik Kniberg

1
 2
 3

People

(# of handoffs)

Time

(feedback delay)

Maker
 User

Minimize distance between Maker and User

Henrik Kniberg

2 minute standup discussion (pair/trio):

• Think of any ongoing project

• What is the distance between Developer & User?

• What can YOU do to reduce the distance?

People

(# of

handoffs)

0

1

2

3

4

5

Time (Feedback delay)

minutes
 hours
 days
 weeks
 months
 years

Maker
 User

1
 2
 3

People

(# of handoffs)

Time

(Feedback delay)

2:00 1:59 1:58 1:57 1:56 1:55 1:54 1:53 1:52 1:51 1:50 1:49 1:48 1:47 1:46 1:45 1:44 1:43 1:42 1:41 1:40 1:39 1:38 1:37 1:36 1:35 1:34 1:33 1:32 1:31 1:30 1:29 1:28 1:27 1:26 1:25 1:24 1:23 1:22 1:21 1:20 1:19 1:18 1:17 1:16 1:15 1:14 1:13 1:12 1:11 1:10 1:09 1:08 1:07 1:06 1:05 1:04 1:03 1:02 1:01 1:00 0:59 0:58 0:57 0:56 0:55 0:54 0:53 0:52 0:51 0:50 0:49 0:48 0:47 0:46 0:45 0:44 0:43 0:42 0:41 0:40 0:39 0:38 0:37 0:36 0:35 0:34 0:33 0:32 0:31 0:30 0:29 0:28 0:27 0:26 0:25 0:24 0:23 0:22 0:21 0:20 0:19 0:18 0:17 0:16 0:15 0:14 0:13 0:12 0:11 0:10 0:09 0:08 0:07 0:06 0:05 0:04 0:03 0:02 0:01 Done

00:17

Final points

Henrik Kniberg

The price of agile
(there is no such thing as a free lunch....)

•  Infrastructure Investments
(release automation, test automation, etc)

•  Reorganization
(new roles, cross-functional teams, etc)

•  New skills
(Vertical story-slicing, retrospectives, agile architecture, etc)

•  New habits
(Frequent customer interaction, frequent release, less specialization)

•  Transparancy
(problems and uncertainty painfully visible rather than hidden)

Henrik Kniberg

Avoid Big-Bang
transformation!

Do it gradually.

Big is Bad!

Break it down!

•  Big project => Several small projects

•  Big feature => Several small features

•  Big team => Several small teams

•  Big transformation => Several small transformations

Henrik Kniberg

Early delivery of business value

Henrik Kniberg

Less bureaucracy

(Thanks Alistair Cockburn for this simplified definition of Agile)

Agile is...

3 concrete changes

1.  Make Real Teams

•  small, cross-functional, self-organizing, colocated

2.  Deliver Often

•  internally every 3 weeks at most

•  externally every quarter at most

3.  Involve Real Users

•  direct and fast feedback between the team and the users

Henrik Kniberg

...gradually...

Agile is a direction, not a place

Henrik Kniberg

The important thing is not your process.

The important thing is

your process for improving your process

1.  Make Real Teams

•  small, cross-functional, self-organizing, colocated

2.  Deliver Often

•  internally every 3 weeks at most

•  externally every quarter at most

3.  Involve Real Users

•  direct and fast feedback between the team and the users

