
Author

Father

Agile & Lean coach

www.crisp.se

Consultant
Henrik Kniberg
henrik.kniberg@crisp.se

@HenrikKniberg

Spotify – the unproject culture
(+ failure story ”how to burn €1 billion”)

Passion for Projects keyote,
May 21, 2013

Henrik Kniberg

Boring but important practical info about these slides

Usage
Feel free to use slides & pictures as you wish, as long as you leave my name somewhere.
For licensing details see Creative Commons (http://creativecommons.org/licenses/by/3.0/)

Downloading the right font
This presentation uses the ”Noteworthy” font. If you’re using Mac OSX 10.7 or later it should be
preinstalled. If you’re on a Windows or older Mac OS then you need to download the font from here:
http://tinyurl.com/noteworthy-ttc
•  On Windows right-click the font file and select ”install”. Then restart Powerpoint.
•  On Mac, double-click the font file and press ”install font”. Then restart Powerpoint.

The PDF version of these slides has the font embedded, so you don’t need to do anything. On the other
hand you don’t get the fancy animations.

Font test

The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

How the font shows up on your computer: How the font is supposed to look:
(screenshot from my computer)

Regardless of font appearance, if that text doesn’t fit nicely into
the box then you’re going to need to download the right font, or
switch to a new font and fiddle with the slides to make sure
things fit.

Purpose of this presentation

Show that projects aren’t the only way to get stuff done

Henrik Kniberg

01:32

Success = ?

Henrik Kniberg

What is a successful project?

Henrik Kniberg

Scope

Budget Schedule

nah....

What is a successful project?

Henrik Kniberg

Project A Project B Project C
Scope

Budget Schedule

Scope

Budget Schedule

Customer

Users

Development team

Customer

Users

Development team

Customer

Users

Development team

Scope

Budget Schedule

Happy
stakeholders!

Happy
stakeholders!

Measuring success

Henrik Kniberg

Happy
development

team
Happy
users

Surveys

Do they
come back

more often?

Do they
stay longer?

Happy
stakeholders

Measure the stuff
that really matters!

Proxy
metrics

Do they listen to
more music?

Do they share
more music?

01:32

A unique & expensive
experiment

Henrik Kniberg

Experiment: Build the same product twice, in different ways

Henrik Kniberg

Project 1 Project 2
Mission Improve society Reduce maintenance cost
Requirements Unclear Clear
Delivery Agile (= Iterative/incremental) Big bang
User involvement Continuous None
Team’s influence
over technology
choices

High None

Tech platform Java
(programming language)

Siebel
(CRM system)

Hypothesis: second version will be cheaper (and better).

Project 1
Mission Improve society
Requirements Unclear
Delivery Agile (= Iterative/incremental)
User involvement Continuous
Team’s influence
over technology
choices

High

Tech platform Java
(programming language)

PUST – ”polisens utredningsstöd”

Henrik Kniberg

Project 1: PUST Java

Henrik Kniberg

2010 2011

Nationwide
release

pilot releases

Henrik Kniberg

Rebuild the whole
thing using Oracle

Siebel Huh? We just spent 100 Mkr
building a working product.

Shouldn’t we keep improving on
that?

Oracle says Siebel
will be cheaper and

better But it won’t work! PUST
is UX critical, and it’s not

a CRM system!

Oracle says Siebel
will be cheaper and

better
Well then let’s build a

small pilot version, to see
if that is true

No time for that.
Build the whole thing in

one go, and release
nationwide when done.

Project 2: Pust Siebel

Henrik Kniberg

A train wreck in slow motion

Project 2: Pust Siebel

Henrik Kniberg

2012 2013

Nationwide
release @#?!

Result of experiment ”build the same product twice”:

Henrik Kniberg

RESULT PUST Java PUST Siebel
Stakeholder
response

Mostly positive Outrage

Cost ≈100 Mkr ≈200 Mkr
+ estimated damage 10 Bkr

Measured impact 2-8x faster processing time
for simple crime investigations

Police blocked several hours
per day. Error rate increased.

PUST Java PUST Siebel
Mission Improve society Lower cost
Requirements Unclear Clear
Delivery Iterative Big bang
User involvement Continuous None
Team’s influence
over technology
choices

High None

Tech platform Java
(programming language)

Siebel
(CRM system)

RESULT PUST Java
Stakeholder
response

Mostly positive

Cost ≈100 Mkr

Measured impact 2-8x faster processing time
for simple crime investigations

Lessons learned

Henrik Kniberg

2010 2011 2012 2013

Pust Java

Nationwide
release

Nationwide
release

• Focus on solving user needs, not cost
• Deliver iteratively & incrementally
• Involve real users

•  Beware of ”standard platforms”

•  They’re not as standard as you think
•  Listen to your tech people more than to the

external vendor trying to sell stuff to you

Pust Siebel

01:32

What makes a project
succeed?

Henrik Kniberg

15,000 person-years of experience

Henrik Kniberg

Communication

Small steps

User involvement

01:32

Do projects help us
succeed?

Henrik Kniberg

Project = ?

Henrik Kniberg

Temporary

People who don’t
normally work

together
Not a routine

operation

Defined Beginning and
End in time

X-mas

A bucket of
people, time, and money

What do people REALLY mean when they say ”project”

Henrik Kniberg

Temporary

People who don’t
normally work

together
Not a routine

operation

Defined Beginning and
End in time

This?

Something we
are working

on

Or this?

All products start with a Great Idea!

Henrik Kniberg

RISK

Big Bang = Big Risk

Henrik Kniberg

Cumulative
Value

Big Projects usually fail. Regardless of process.

Henrik Kniberg

< $1 million
> $1 million

”The Standish Group has categorically stated with
much conviction—backed by intense research—
that the secret to project success is to strongly
recommend and enforce limits on size and

complexity.”

”These two factors trump all other factors.”

Project model invites Big Bang thinking

Henrik Kniberg

Temporary

People who don’t
normally work

together
Not a routine

operation

Defined Beginning and
End in time

Big Bang Project

Agile = Iterative + Incremental

Henrik Kniberg

Don’t try to get it all right
from the beginning

Don’t build it all at once

cost
value

cost value

RISK

Not like this....

Henrik Kniberg

1 2 3 4

51 432

Like this!

Slice the elephant!

Henrik Kniberg

PUST Java

1.0

1.2

1.3 1.4

1.5

Region
Östergötland,
Uppsala, etc

Crime types
(weapon,
drunk driving,
shoplifting, etc)

Integrations

1.1

Henrik Kniberg

Project model doesn’t fit well for IT product development

Project

Deliver

Deliver

Project = ?

Deliver
Do Stuff

Deliver
Deliver Deliver

Do Stuff Do Stuff Do Stuff Do Stuff

•  A project is a temporary, non-routine operation.
•  Product development teams are long-lived,

and they deliver routinely.

•  Projects have a fixed end.
•  Product development is continuous

Do Stuff
Big Bang approach

Do Stuff

Agile approach

Temporary

People who don’t
normally work

together
Not a routine

operation

Defined Beginning and
End in time

Improving the Value Curve

Henrik Kniberg

Big Bang Big increments Small increments Highest value first

Value

Effort

RISK

Henrik Kniberg

Maximize Value, not Output

Project Model vs Agile Model

Henrik Kniberg

Project Model Agile Model

PUST Siebel PUST Java

01:32

What is Spotify?

Henrik Kniberg

Henrik Kniberg

Play Everywhere!

Like a magical music player in which
you’ve bought every song in the world!

• Revolutionizing the music industry
• Popular product that spreads virally
• Happy employees
• Stable revenue model

2006 2007 2008 2009 2010 2011 2012

10M

20M

30M 24 million
active users

6 million
Paying
subscribers

User growth

Employee growth

Henrik Kniberg
2006 2007 2008 2009 2010 2011 2012

1300+ employees
30+ countries

250

750

1000

500

2013

≈400 people in tech

Henrik Kniberg
37

Stockholm
250

Gothenburg
30

New York
100

San Francisco
10

01:32

How Spotify works

Henrik Kniberg

The Spotify ”unproject”

Henrik Kniberg

Timeline2008 2013

> 60 squads

Henrik Kniberg

Henrik Kniberg

Autonomous Squad
Cross-functional, co-located, self-organizing team

42

Squads are grouped into Tribes

Henrik Kniberg

Tribe Tribe Tribe

TribeTribe Tribe

Tribe Tribe

Chapter

Chapter

Chapter

Chapter Guild

Each Tribe is a lightweight matrix focused on delivery
Vertical = Delivery.
Horizontal = knowledge sharing & personal development

Reality is messy

Henrik Kniberg

Community > Structure
Face-2-face communication

How do we align 60+
mini-startups?

Henrik Kniberg

Alignment & Autonomy

Henrik Kniberg

Alignment

Do what
I say!

Autonomy

Do
whatever

False dichotomy

Alignment enables Autonomy

Henrik Kniberg

High
Alignment

High Autonomy

Build a
bridge!

Micromanaging
organization
Indifferent
culture

Entrepreneurial
organization
Chaotic
culture

Authoritative
organization
Conformist
culture

Innovative
organization
Collaborative
culture

We need to
cross the river

Figure out how!
We need to

cross the river

Low
Alignment

Low Autonomy

Hope someone is
working on the
river problem…

Aligned Autonomy!

Leader’s job:
Explain what problem needs to be solved.
And Why.

Henrik Kniberg

Aligned Autonomy
- be autonomous, but don’t suboptimize
- Spotify’s mission > Squad’s mission

Henrik Kniberg

Fastest learner wins!
Delivery frequency = Speed of learning

Henrik Kniberg

Feedback,
Requests,
Data

Demos,
Releases

Development team

Stakeholders, Users

Release must be REALLY easy!

Henrik Kniberg

Req Code Test

Release!

Release = Drama!

Release = Routine

Releasing is
easy

Release
often

Releasing is
hard

Release
seldom

Decoupling to enable
frequent releases

Henrik Kniberg

Feature squads

Client App squad

!#?

Self-service model

Henrik Kniberg

Client App squads

IOS Android Desktop Web

Feature squads

Infrastructure squads

Enable & support

Enable &
support

Enable &
support

Henrik Kniberg

Release trains & Feature toggles

Failure Recovery is more important
than Failure Avoidance

Henrik Kniberg

Failure RecoveryFailure Avoidance

“Limited Blast Radius” via decoupled architecture

Henrik Kniberg

”Limited Blast Radius” via gradual rollout

Henrik Kniberg

Trust > Control
100% control = 0% motion

Henrik Kniberg

If everything’s under control,
you’re going too slow!

- Mario Andretti

01:32

How Spotify builds
products

Henrik Kniberg

Our product philosophy

1: We create innovative products while managing risk by prototyping
early and cheaply.

2: We don’t launch on date, we launch on quality.

3: We ensure that our products go from being great at launch to
becoming amazing, by relentlessly tweaking after launch.

Henrik Kniberg

Impact A/B stats

Henrik Kniberg

Analyze data

Narrative & Metrics
& Prototypes

Build MVP

Deploy
to X% of users

Tweak

“Radio you
can save!”

Idea/Problem

Minimum Viable Product

Backlog Developing Released Impact
achieved

Henrik Kniberg

Prototypes

Narrative

MVP 1% shipped
5% shipped 100% shipped

Think It Build It Ship it Tweak it

100% predictability = 0% innovation

Henrik Kniberg

Focus on
Innovation

Focus on
Predictability

You already have innovators!
Just unleash them.

Henrik Kniberg

Hack days
Hack weeks

10%Hackathon
every few

months

20% time

Lab Day
last Friday

every month

Company-wide hackweek
•  One whole week.
•  Everyone at Spotify

•  Build whatever you want….
•  With whoever you want…
•  In however way you want.

•  Demo & party on Friday!

Henrik Kniberg

01:32

”Projects” at Spotify

Henrik Kniberg

A Spotify ”project” is...

Henrik Kniberg

....a focused and coordinated effort of severals squads for several months

We are organized to minimize the need for projects.

But sometimes a project is unavoidable.

We aren’t very good at doing big projects
- but we will keep experimenting and learning!

01:32

Some things we’ve
learned about how to do
”projects”

Henrik Kniberg

Find the balance

Henrik Kniberg

Chaos Bureaucracy

Agile

Culture

Daily sync
- resolve dependencies

Henrik Kniberg

All involved squads
•  What do you need from another squad right now?
•  What is your progress since yesterday that affects the other squads?
•  What do you plan to do today that will affect the other squads?

Weekly demo
- evaluate the integrated product

Henrik Kniberg

•  Triggers tight integration and collaboration
•  Gives a sense of progress
•  Triggers decisions & reprioritization

Visual management
& Light-weight adaptive planning
Focus on impact!
 Not dates or deliverables.

Henrik Kniberg

Plans are useless.
Planning is essential.

Eisenhower

Retrospectives – during and after the ”project”

Henrik Kniberg

Leadership needed
(...but how?)

Henrik Kniberg

Leadership is an activity, not a role.

>Appointed leadershipEmergent leadership

Experiments:
-  RM (road manager)
-  Leadership duo/trio

(tech + product + design)

What about project managers?
 We do value (most) PM skills.

But we’re not sure we need a PM role.

Henrik Kniberg

... resolving complex,
interdependent activities into

sub-tasks that are documented,
monitored, and controlled

... work well under pressure and are
comfortable with change and

complexity in dynamic environments

”Project managers are change agents.
They make project goals their own and use
their skills and expertise to inspire a sense

of shared purpose”
We call this Road Manager.

We coach squads to do this themselves,
in a just-in-time decentralized way.
 Sometimes they need support though.

... can shift readily between ”big
picture” and small-but-crucial

details
We try to build this
competence into each squad

Debatein progress

01:32

Wrapup

Henrik Kniberg

Ask the right question

Henrik Kniberg

(and how do we run
projects when we

can’t avoid it)

How can we
minimize the need
for big projects?

How can we minimize
the size of projects?

How can we run
big projects

Take-away points

Projects aren’t the only way to get things done
• The standard project model is a tool
• Like any tool, it is suitable for some situations but not all.
•  It is often unsuitable for IT product development

Success = happy stakeholders. Not time/budget/scope.
• Minimize the size, deliver iteratively & incrementally
• Focus on solving real user needs,

and involve them continuously
Experiment!

• You can always improve. So keep trying new ways.

Henrik Kniberg

