
Author

Parent

Agile & Lean coach

www.crisp.se

Consultant
Henrik Kniberg
henrik.kniberg@crisp.se

@HenrikKniberg

Real-life Agile Scaling
Keynote - Agile Tour Bangkok

Nov 21, 2015

Not too hard

Henrik Kniberg

A bit trickier

Henrik Kniberg

Henrik Kniberg

Hard!

How do we avoid THIS?

Henrik Kniberg

01:32

Beware of Scaling

Henrik Kniberg

Beware of Scaling

Potential Downside (Risk):
•  Longer delivery time

because of misalignment
& dependencies

•  Worse product
because of
bad communication

Henrik Kniberg

! ?

?

Guaranteed Downside
•  Cost
•  Complexity

Potential Upside:
•  Shorter delivery time

more hands on deck,
parallell work

•  Better product
access to wider range
of competences

Stuff you need to figure out with multiple teams

Henrik Kniberg Dependencies!

How to slice the elephant Team sync / alignment

Team structure Feedback loop

01:32

Slice the elephant

Henrik Kniberg

RISK

Big Bang = Big Risk

Henrik Kniberg

Cumulative
Value

Source: Chaos Manifesto 2013, Standish group

38%
totally fail1

10%
succeed

Henrik Kniberg

Lego
Universe

4 years to first public
release

≈250 people involved

Shut down after 2
years of operation

Henrik Kniberg

1

1 2 3

2 5

Not like this....

Like this!

43

4

Slice the elephant!

Henrik Kniberg

1.0

1.2

1.3 1.4

1.5

Region
Östergötland,
Uppsala, etc

Crime types
(weapon,
drunk driving,
shoplifting, etc)

Integrations

1.1

MVP – Minimum Viable Product

Henrik Kniberg

Minimum viable

Henrik Kniberg

Earliest
Testable
Product

Earliest
Usable
Product

Earliest
Lovable
Product

Aim for the Clouds...

Earliest testable/usable/lovable

But deliver in Small Steps

Two types of slicing
Release

1.0
Release

1.1
Release

1.3

Slicing to enable
early & frequent release

Release
1.2

Slicing to enable
parallel development

Henrik Kniberg

01:32

Build a suitable
Team Structure

Component team vs Feature team

Henrik Kniberg

Client team

C C C

Test team

T T T

DB team

D D D

Server team

S S S

Feature team 1

C
C

S

D

T
T

C

S

D

T

Feature team 2

D

S

DB

Server

Client

User

Communities
of interest

Two conflicting goals (at scale):

1.  Team should be “full-stack”
2.  Team should be small

Henrik Kniberg

Front end

Back end

Test

Data analytics

UX

Design

DB

Monitoring

Operations
Build systems Big Data

SecurityPerformance
Marketing

Hardware

Team types - finding the right balance

100% feature teams 100% Component
teams

Small orgs

Trade-off

Large orgs

Small orgs

Large orgs Large orgs

Small orgs

Henrik Kniberg

Types of dependencies
Building the
same product
(implicit dependency!)

Building different products, but
have dependencies

Knowledge sharing Knowledge sharing
Dependency sync

Knowledge sharing
Dependency sync
Product integration

independent
teams

Henrik Kniberg

Dependencies

Good Dependency
(aka “collaboration”)

Bad Dependency !?#@%

Henrik Kniberg

Example:
Visualizing team dependencies

Our Team
Team
Snap

Team
Flash

Team
Bazinga

Team
Sheldon

Team
TBBT

Henrik Kniberg & Jan Grape

Example:
Visualizing team dependencies

Henrik Kniberg

Good vs bad dependencies
Full-stack team.
Can deliver customer value
independently.

A A1

B

A2

Platform

Platformized teams
Team A1 and A2 are more effective because
of team B’s platform

Coupled teams
A must sync with B in order
to deliver customer value.

A

B

Henrik Kniberg

Customer-driven platform teams

A1

B

A2

Platform

The other teams are our
customers!

The other teams must
obey us!

External-facing teams
Focus on delivering value to
external customers

Internal-facing teams
Focus on making other teams more
effective at delivering value to their
customers.

Key decision:
Where can we accept low-bandwidth communication?

Low
bandwidth

High bandwidth

High bandwidth

The speed of development is
determined by the
speed of ideas spreading

Alistair Cockburn

Henrik Kniberg

Teams of Teams!

Bunch of
individuals

Teams of
Small teams

Big teams Small
Teams

Henrik Kniberg

Decoupling to enable
frequent releases

Henrik Kniberg

Feature squads

Client App squad

!#?

Guidelines for team structure

Try to ensure that each team:
❏  is 3-9 people
❏  is stable(ish), full-time & co-located.
❏  has a mission
❏  has clear customers
❏  can prioritize between customers

(ex: via a PO role, or via clear strategic guidelines)
❏  cross-functional: has all skills and tools needed to

deliver value to customers
❏  autonomous: doesn’t get blocked waiting for other

teams and individuals.
Henrik Kniberg

01:32

Scale the feedback loop

Henrik Kniberg

Single team feedback loops

Henrik Kniberg

Daily Standup
Retrospective

Continuous Integration

Unit tests

Sprint review

Multiteam feedback loops

Henrik Kniberg

Cross team sync,
retro, etc

Whole Product review

Pattern: Integration Cadence

Henrik Kniberg

Henrik Kniberg

Pattern: 2-tier planning/alignment

Months

Weeks Weeks Weeks Weeks

Henrik Kniberg

Pattern: Plan on a cadence, release on demand

Release
candidates

Release
candidates

Planning
event

Planning
event

Planning
event

Release 1.0 Release 1.1 Release 1.2
Release 1.2.1

Release 2.0

Henrik Kniberg

Test &
integrate

Deploy to
staging

Deploy
to prod

Manual
test

Manual Code &
commit

Build Automatic

Continuous Integration =
Mandatory!

Continuous Delivery =
Aspirational.

Single
click

Henrik Kniberg

01:32

Get everyone aligned

Henrik Kniberg

Misaligned teams move very slowly

Henrik Kniberg

More teams = more likely that you will need
dedicated leader(s)

Henrik Kniberg

Example: Leadership ”Trios”

T P D

Tech Product Design

Henrik Kniberg

Alignment & Autonomy

Henrik Kniberg

Alignment

Do what
I say!

Autonomy

Do
whatever

False dichotomy

Alignment enables Autonomy

Henrik Kniberg

High
Alignment

High Autonomy

Build a
bridge!

Micromanaging
organization
Indifferent
culture

Entrepreneurial
organization
Chaotic
culture

Authoritative
organization
Conformist
culture

Innovative
organization
Collaborative
culture

We need to
cross the river

Figure out how!
We need to

cross the river

Low
Alignment

Low Autonomy

Hope someone is
working on the
river problem…

Aligned Autonomy!

Example:
Big-room planning/alignment at Lego
Planning as a social event

Henrik Kniberg

2 days, 19 teams, 150 people

Henrik Kniberg

Demo video – what have we accomplished?

Henrik Kniberg

Lightning talks

Global Insights Digital Child Safety Data Privacy Law

High level priorities:
1.  ...
2. ...
3. ....

Architecture vision / priorities / constraints

Henrik Kniberg

Pattern: Different levels of granularity

Henrik Kniberg

Program/Product backlog

Feature/Epic
Marketable
Releasable

Story
Testable
Fits in a sprint

Story
Testable
Fits in a sprint

Team Backlog Team Backlog

Team breakout: Pulling from the program backlog

Henrik Kniberg

Henrik Kniberg

Team breakout: Pulling from the program backlog
(digital version)

Henrik Kniberg

Team breakouts Law of 2 feet....

Henrik Kniberg

Program Board
(a.k.a Dependency Board)

Henrik Kniberg

Henrik Kniberg

Early detection of dependency problems

Scrum of Scrums = dependency sync

Henrik Kniberg

Simpler version of dependency sync

Dependency board
”right now, who’s waiting for what
from whom”

Henrik Kniberg

Risk board
(per project/epic)

Henrik Kniberg

Management review / problem solving

Henrik Kniberg

Management feedback & commitment to help

Henrik Kniberg

Day 2

Pattern: Information radiators

Henrik Kniberg

•  In the hallway
•  Or in a War Room Zen Room

Henrik Kniberg

Big Picture – features/epics

Team 1 - stories
Team 2 - stories Team 3 - stories

Henrik Kniberg

Count
cards

Velocity per week

Example: Measuring velocity by counting cards

Henrik Kniberg
65

65

Total
of
delivered
features

Week

Example: Release planning using a burnup chart
All of these
will be done

Some of these
will be done,

but not all

None of these
will be done

01:32

Wrapup

Don’t go overboard with Agile!

Henrik Kniberg

No plan
Big up front

planRough, adaptive
plan

No architecture
Big up front
architecture

Rough, adaptive
architecture

WaterfallBad Agile Good Agile

Stuff you need to figure out with multiple teams

Henrik Kniberg Dependencies!

How to slice the elephant Team sync / alignment

Team structure Feedback loop

Real-life agile scaling – take aways
•  Scaling hurts

Keep things as small as possible
•  Agile is a means, not a goal

Don’t go Agile Jihad. Don’t dump old practices that work
•  There is no “right” or “wrong” way

Just tradeoffs
•  There is no one-size-fits-all

But plenty of good practices
•  Build feedback loops at all levels

Gives you better products and a self-improving organization.

Henrik Kniberg

