
Author

Dad

Organizational coach
& Change Instigator

www.crisp.se

Consultant
Henrik Kniberg
henrik.kniberg@crisp.se

@HenrikKniberg

Climate guyScrum? Agile?
KTH, Sep 2018

Continuous
Integration

XP

Henrik Kniberg

User stories

Agile

Lean

Sprint

TDD

Velocity

Pair
programming

Kanban

Daily standup

Retrospective
Scrum

01:39

A history of failure

Henrik Kniberg

Big Projects usually fail. Regardless of process.

Henrik Kniberg

< $1 million
> $1 million

Source: Chaos Manifesto 2013

“half of all large IT projects (>$15 million) massively blow their budgets. On average, large
IT projects run 45 percent over budget, while delivering 56 percent less value than
predicted. Software projects run the highest risk of cost and schedule overruns”
http://www.mckinsey.com/business-functions/business-technology/our-insights/delivering-large-scale-it-projects-on-time-on-budget-and-on-value

We tend to build the wrong thing

Henrik Kniberg

Sources:
Standish group study reported at XP2002 by Jim Johnson, Chairman

The right-hand graph is courtesy of Mary Poppendieck

Always
7% Often

13%

Some-
times
16%

Rarely
19%

Never
45%

Features and functions used in a typical system
Half of the

stuff we build
is never used!

Complex
ityCo

st
of features

01:39

How successful products
are developed

Henrik Kniberg

Pixar

Henrik Kniberg

Example: Pixar

Henrik Kniberg

That's a blunt assessment, I know, but I choose that
phrasing because saying it in a softer way fails to convey
how bad the first versions really are.

Our job is to make them go from
Suck to Not-Suck.

Ed Catmull
President of Pixar & Disney Animation Studios

Early on, all of our movies suck.

Henrik Kniberg

Henrik Kniberg

In the early stage of making a movie, we draw
storyboards (a comic-book version of the story) and then
edit them together with dialogue and temporary music. The first versions are very rough, but they give a sense

of what the problems are, which in the beginning of all
productions are many.

We then iterate, and each version
typically gets better and better.

Henrik Kniberg

Henrik Kniberg

Lego
Universe

4 years to first public
release

≈250 people involved

Shut down after 2
years of operation

Lego Universe Spider Cave

Henrik Kniberg

Brian Tyler

Henrik Kniberg

Built by 1-2 people

$80 million revenue within
first 15 months

Sold to MS for $2.5 Billion!

> 100 releases within first year

6 days to first public release

Henrik Kniberg

4 years of development – 1000 man years!

Super Beautiful!
Kinda fun.
Low revenue.

2 years later...
Lego

Universe

Dead!

100s of releases....

Beautiful enough.
SUPER fun!
LOTS of revenue!

Ugly, kinda fun.

Few days of
development

Fame & Glory &
Riches & Happy players!

Henrik Kniberg

01:39

Predictive vs Adaptive
processes

Henrik Kniberg

Predictive process = cannon ball

Henrik Kniberg

Assumptions:
• The customers knows what they need
• The teams know how to deliver it
• Few things change along the way

Adaptive process = homing missile

Henrik Kniberg

Assumptions:
• The customer discovers what they need
• The teams discover how to deliver it
• Many things change along the way

Henrik Kniberg

What to
deliver

Unclear/unstable

Clear & stable

How to
deliver it

Clear & stable Unclear/unstable

Simple

Complicated

Complex

Most projects are
here!

01:39

Once upon a time
15 years ago...

Henrik Kniberg

www.agilemanifesto.org
We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan
That is, while there is value in the items on

the right, we value the items on the left more.

solutions

feedback

Henrik Kniberg

Principles behind the Agile Manifesto
• Our highest priority is to satisfy the customer

through early and continuous delivery of valuable
software.

• Welcome changing requirements, even late in
development. Agile processes harness change for
the customer's competitive advantage.

• Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

• Business people and developers must work
together daily throughout the project.

• Build projects around motivated individuals. Give
them the environment and support they need, and
trust them to get the job done.

• The most efficient and effective method of
conveying information to and within a
development team is face-to-face conversation.

• Working software is the primary measure of
progress.

• Agile processes promote sustainable
development. The sponsors, developers, and
users should be able to maintain a constant
pace indefinitely.

• Continuous attention to technical excellence
and good design enhances agility.

• Simplicity--the art of maximizing the amount of
work not done--is essential.

• The best architectures, requirements, and
designs emerge from self-organizing teams.

• At regular intervals, the team reflects on how
to become more effective, then tunes and
adjusts its behavior accordingly.

Henrik Kniberg

Agile ”umbrella” –
a family of iterative, incremental methods

Scrum XP DSDM FDD

Crystal

Kanban

Henrik Kniberg

01:39

Slicing the elephant

Henrik Kniberg

Henrik Kniberg

1

1 2 3

2 5

Not like this....

Like this!

43

4

Slice the elephant!

Henrik Kniberg

1.0

1.2
1.3 1.4

1.5

Region
Östergötland,
Uppsala, etc

Crime types
(weapon,
drunk driving,
shoplifting, etc)

Integrations

1.1

01:39

Optimize for flow,
not resource utilization

Henrik Kniberg

Needed: 5 volunteers

DEM
O

100% resource utilization = 0% flow

Henrik Kniberg

High resource utilization Fast flow

01:39

Optimize for value,
not effort

Henrik Kniberg

Henrik Kniberg

Output (items delivered)

Value

Effort (hours spent)

Focus on Value
not Effort or Output

What you measure is what you get

Henrik Kniberg

Focusing on
Effort

Hours
Time reports

Resource utilization

Backlog Developing Released!Focusing on
Output

$ $$$
Focusing on
Value & Learning

?

01:39

Stable, cross-functional
teams

Henrik Kniberg

Case study: Game development company

Concept
pres.

Resource
planning

Graphics
design

Sound
design Dev Integr. &

deploy
1m

4h
6m

8

Game backlog

1w 6m 6m

15

Design-ready games

12

Production-ready games

1m 3w 3m 3w1d
(1m+2m)

Actual work: 3 months
Time to market: 25 months

Before

Concept
pres.

Resource
planning

Graphics
design

Sound
design Dev Integr. &

deploy
1m

4h
6m

8

Game backlog

1w 6m 6m

15

Design-ready games

12

Production-ready games

1m 3w 3m
(1m+2m)

3w1d

Cross-functional game teams

Game team
(graphics, sound, dev,

test, deploy, etc)

Time to market: 3-4 months

After

Actual work: 3 months
Time to market: 25 months

7 times
faster!

Better
games!

More
fun!

Agile team =
stable, small, cross-functional, self-organizing, co-located

Henrik Kniberg

Henrik Kniberg

Todo Doing Done

01:39

Scrum = the most popular
agile framework

Henrik Kniberg

Scrum in a nutshell

Henrik Kniberg

January April

Split your organization

Split your product

Split time

Order the backlog
Optimize process

$

$$$

Burndown

Unplanned items

Not
checked out Done! :o)

Write
failing
test

DAO

DB
design

Integr
test

Migrat ion
tool

Write
failing
test

GUI
spec

Tapestry spike
Impl.

migration

2d

Code
cleanup

Deposit

2d1d 0.5d
1d

2d

8d

1d 2d

2d

Backoffice
Login

Backoffice
User admin

Write
failing
test

3d

2d

1d
2d

Impl
GUI

1dIntegr.
with

JBoss
2d

Write
failing
test

3d

Impl
GUI

6d

Clarify
require-
ments

2d

GUI
design
(CSS)

1d

Fix memory leak(JIRA 125)2d
Sales support

3d Write
whitepaper

4d

SPRINT GOAL: Beta-ready release!

Next

WithdrawPerf testWithdraw

checked out

Write
failing
test

Large group spending a long time building a huge thing
Small team spending a little time building a small thing

... but integrating regularly to see the whole

01:39

Leadership

Henrik Kniberg

Not too hard

Henrik Kniberg

A bit trickier

Henrik Kniberg

Henrik Kniberg

Hard!

How do we avoid THIS?

Henrik Kniberg

Common reaction

Henrik Kniberg

Someone needs to
take charge!

Alignment & Autonomy

Henrik Kniberg

Alignment

Do what
I say!

Autonomy

Do
whatever

False dichotomy

Alignment enables Autonomy

Henrik Kniberg

High
Alignment

High Autonomy

Build a
bridge!

Micromanaging
organization
Indifferent
culture

Entrepreneurial
organization
Chaotic
culture

Authoritative
organization
Conformist
culture

Innovative
organization
Collaborative
culture

We need to
cross the river

Figure out how!
We need to

cross the river

Low
Alignment

Low Autonomy

Hope someone is
working on the
river problem…

Aligned Autonomy!

Leader’s job:
Explain what problem needs to be solved.
And Why.

Henrik Kniberg

01:32

Agile outside IT

Henrik Kniberg

JAS 39E Saab Gripen

Henrik Kniberg

Agile practices implemented at every level and in
every discipline: software, hardware and fuselage
design.

Pilots on the same site as
development teams.
Direct feedback provided
every sprint.

Compared to F35 joint strike fighter,
Gripen 39E has:
• 50x lower development cost!
• 10x lower unit cost!1500 people, all

co-located in
Linköping, Sweden.

World’s most cost-effective
military aircraft
($4700 Cost per Flight Hour)

Sources:
• http://www.stratpost.com/gripen-operational-cost-lowest-of-all-western-fighters-janes
• Personal visit to SAAB Linköping
• Research paper “Owning the Sky with Agile”

http://www.stratpost.com/gripen-operational-cost-lowest-of-all-western-fighters-janes

Recruitment team

Henrik Kniberg

Henrik Kniberg

Recruitment team

Henrik Kniberg
67

01:32

The story of Robbit

Henrik Kniberg

Robit

Henrik Kniberg

Henrik Kniberg

Henrik Kniberg

2 kids & rookies with very
little robot experience...

... vs ten teams
of
adult geeks and
programmers

Step 1: Set a clear goal (define “success”)

Henrik Kniberg

Let’s build a robot
that at least can put

a fight....

No! We’re going
to WIN!

Henrik Kniberg

Agile

Henrik Kniberg

Step 2: Build a Minimum Viable Robot
(Earliest Testable Robot)

Aim for the clouds,
but deliver and test in small steps

Henrik Kniberg

Can stay
in the ring

Can find
opponent

Step 3: Build an opponent to practice against

Henrik Kniberg

Field test, Field test, Field test

Henrik Kniberg

Can stay
in the ring

Can find
opponent

Can get to
opponent

Can budge
opponent

Can win match
against a static

opponent

Aim for the clouds,
but deliver and test in small steps

Henrik Kniberg

Can stay
in the ring

Can find
opponent

Can get to
opponent

Can budge
opponent

Can win match
against a static

opponent

Lifter? Or no lifter?

Henrik Kniberg

Hypothesis:
- Mechanical Lifter can help us win

Experiment:
- Build a simple lifter and try

Learning:
- Works as designed...
- But too weak to lift opponent
- ... so it doesn’t help us win!

Options:
- Keep it cuz it’s cool (who needs to win anyway)
- Improve it
- Remove it, try a different approach

Simpler was better

Henrik Kniberg

Field testing =
Success by
100 failures

Henrik Kniberg

Henrik Kniberg

Henrik Kniberg

Henrik Kniberg

Henrik Kniberg

How could they win?

Building skill? No.
Programming skills? No.
Luck? Partly, but not entirely.

Henrik Kniberg

1) Clear goal
2) Low self-confidence
3) Emergent design
4) LOTS of field testing!

Henrik Kniberg

01:39

The biggest problem in the
world

Henrik Kniberg

The Biggest Problem In The World!

Henrik Kniberg

Radical innovation needed

Henrik Kniberg

Carbon capture & storage

Agriculture
Transportation

Energy production & storage

01:39

Wrapup

Henrik Kniberg

15,000 person-years of experience

Henrik Kniberg

Communication

Small steps

User involvement

Don’t go overboard with Agile!

Henrik Kniberg

No plan
Big up front

planRough, adaptive
plan

No architecture
Big up front
architecture

Rough, adaptive
architecture

Many traditional projectsBad Agile Good Agile

Find (or create) agile companies!

How to recognize real agility:
• Work in small, cross-functional, self-organizing teams
• Release often & get real user feedback
• Focus on Value rather than Output/Cost
• Experiment a lot with product & process

Henrik Kniberg

We do
Scrum!

We are
Agile!

Beware empty buzzwords

