
From Good-Enough to Great

Workshop

Define Success and get there using
Kanban & Continuous Improvements

Christophe Achouiantz
@ChrisAch

http://leanagileprojects.blogspot.com

BUSINESS

SERVICE SHEET

SERVICE NAME

HIGH CONCEPT PURPOSE

TROUBLE

Superb Great
Good

enough
Sucks Unacceptable

CURRENT CAPABILITY FITNESS CRITERIA

How to
measure

How to
measure

How to
measure

How to
measure

1

2

3

4

DATE

When do you succeed in the eyes of your customer(s)?

Christophe Achouiantz @ChrisAch

IN THE PAST... BUT THEN ONE DAY... AND WE LIKED IT BECAUSE...

AND THAT CAUSED... SO WE WANT TO...

Story template by Jason Little (http://leanchange.org/) Christophe Achouiantz @ChrisAch

YOUR ORIGIN STORY Why Kanban? Why Change?

OUR PROMISES

1. Work (all, according to current policies)

2. Work Types

3. Workflow (“process”, way-of-working, value stream)

4. ‘Next’ & ‘Done’

5. Current Team Focus (avatars)

6. Blocks

7. Current Policies (DoD, DoR, capacity allocations, etc.)

8. Ready for Pull (“done” within the workflow/in columns)

9. Metrics (lead-times, local cycle times, SLA targets, etc.)

10. WIP limits

11. Inter-work dependencies (hierarchical, parent-child, etc.)

12. Inter-workflow dependencies

13. Risk dimensions (cost-of-delay, technical risk, market risk)

14. Visualization easy to access: ”One look away”

Christophe Achouiantz @ChrisAch

VISUALIZE

1. No WIP limit, but commitment to finishing work over

starting new (eventually reaching a WIP level that “feels

OK” for the team)

2. Some explicit WIP limits, at lower level than workflow (a.k.a

Proto-Kanban): personal Kanban, WIP limit per person, WIP

limits for some columns or swim-lanes, workflow with

infinite limits on “done” queues, etc.

3. Explicit WIP limit at workflow level - Single workflow full pull

4. Multiple interdependent workflows with pull system

LIMIT WORK IN PROGRESS MANAGE FLOW

1. Deferred Pull decisions (dynamic prioritization)

2. Flow discussed during team huddles

3. Blocks out of team control are escalated for resolution

4. Record delivery capability over time: “trailing indicators” using

graphs (CFDs, Control Charts, lead-times distribution)

5. Know current delivery capability: ”flow metrics” (lead-times,

throughput, due-date performance)

6. Size of ongoing work items is limited (large work is broken down)

7. Flexible staff allocation (swarming)

8. Cadence is established (planning, delivering, retrospective)

9. SLA expectations and forecasts (lead-time targets)

10. Capacity Allocations

MAKE POLICIES EXPLICIT IMPLEMENT FEEDBACK LOOPS IMPROVE

WHERE ARE YOU RIGHT NOW?

1. Definition of Work Types and Work Item (template)

2. How to pull work (selection from ‘Next’/prioritization of WIP)

3. Who and when manages the ‘Next’ and ‘Done’ queues

4. Staff allocation / work assignment (individual focus)

5. Definition of Done at all steps (seen as a Target Condition)

6. Who, when and how to estimate work size

7. Definition of Ready for ‘Next’

8. How to select & prepare work for the ‘Next’ queue

9. Knowledge spreading/sharing strategy

10. Limit size of work items (work breakdown)

11. Class-of-Service

12. Capacity allocation

1. Team huddles (at least once per week)

2. Team members know who has initiated each work item and

who to contact for more information and reporting

3. Manager meets the team at least once per week

4. Key stakeholders (mngt, customers, other groups) are

regularly updated on the current situation

5. Regular discussions with up- and downstream partners

6. Regular discussions about Financial performance

7. Regular discussions about Quality KPI (defect rate, customer

satisfaction, etc.)

8. “Regularly” means once per month or more often

1. The team knows why it exists and its criteria for success

2. The team has identified and selected a Challenge to address

3. Regular Retrospectives / Kaizen events

4. The team knows its current condition (may require metrics)

5. The team knows the current target condition (the challenge)

6. There is a validation criteria (test) for the current target condition to

know when the target condition is reached

7. The team knows what obstacles are preventing them from reaching

the target condition

8. The team knows what obstacle is being currently addressed

9. The team knows what is the next step in resolving the current

obstacle (PDCA)

10. True North exists, is communicated and shared by the team

11. The team go and see what they have learned from taking that step

EFFECTS (SEEING EVIDENCE OF…)

1. Team members are seeing and understanding the Big Picture

(team-level vs. local situations)

2. Better “team spirit” (helping each-others to complete work,

respect)

3. Focus on removing blocks

4. Focusing on finishing work rather than starting new work

5. Team is working on the “right” thing (“right” prioritization)

6. Limiting work to team’s capacity (limited stress, optimal lead-

times)

7. Team has motivation to drive improvements

8. Local process evolution (visualization, workflow, policies, WIP limits)

9. Increase depth of Kanban implementation

10. Process evolution was model-driven

11. Policy evolution as a result of mentor-mentee

12. Policy evolution due to operations review

The Depth of Kanban

Visualize (14)

Limit WIP (4) Feedback Loops (8)

Improve (11)

Explicit Policies (12) Manage Flow (10)

True Lean

Improving Continuously

1

Effects (12)

Kanban

Minimum Necessary for a

”Lean Adoption”

Christophe Achouiantz @ChrisAch

WHERE ARE YOU RIGHT NOW? The Depth of Kanban

Christophe Achouiantz @ChrisAch

#1 PROMISE TO FULFILL #1 LOW-HANGING FRUIT #1 GOAL FOR YOUR SERVICE

YOUR JOURNEY

The Past The Present The Future

Challenge

When are you done (measure)?

Experiments

Challenge

When are you done (measure)?

Experiments

Challenge

When are you done (measure)?

Experiments

Next Target Condition Next Target Condition Experiments (Policies!)

Your Plan to Become Great!

